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Abstract—In this two-part paper we develop a unifying frame-
work for the analysis of the feasibility of the power flow equations
for DC power grids with constant-power loads.

Part II of this paper explores further implications of the
results in Part I. We present a necessary and sufficient LMI
condition for the feasibility of a vector of power demands
(under small perturbation), which extends a necessary condition
in the literature. The alternatives of these LMI conditions are
also included. In addition we refine these LMI conditions to
obtain a necessary and sufficient condition for the feasibility
of nonnegative power demands, which allows for an alternative
approach to determine power flow feasibility. Moreover, we prove
two novel sufficient conditions, which generalize known sufficient
conditions for power flow feasibility in the literature. Finally, we
prove that the unique long-term voltage semi-stable operating
point associated to a feasible vector of power demands is a strict
high-voltage solution. A parametrization of such operating points,
which is dual to the parametrization in Part I, is obtained, as
well as a parametrization of the boundary of the set of feasible
power demands.

Index Terms—Power flow analysis, DC power grids, constant-
power loads, voltage stability

IV. INTRODUCTION OF PART II

The feasibility of the power flow equations is of crucial
importance for the long-term safe operation of a power grid.
Classical papers such as [1], [2], [3] have studied this problem
for AC power grids, and over the past decade, the research for
AC power grids has been reinvigorated by articles such as [4],
[5], [6], [7], [8]. Unfortunately, a complete understanding of
this problem is still lacking.

Similar to the AC case, the somewhat simpler case concern-
ing DC power grids is also not well-understood. A notable
advancement is [9], which presents an algorithm to decide on
the feasibility of the DC power flow equations with constant-
power loads. However, a full characterization of the feasibility
of the DC power flow equations is not found in the literature.
For a more detailed introduction we refer to Part I of this
paper.

The aim of this twin paper is to provide an in-depth analysis
of the power flow equations of DC power grids with constant-
power loads, and develop a framework which unifies and
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extends known results in the literature. In Part I we presented
a complete geometric characterization of the feasibility of the
associated power flow equations. More importantly, we ob-
tained necessary and sufficient conditions for their feasibility,
and presented a method to compute the corresponding long-
term voltage semi-stable operating point, which was shown
to be unique. These advances fill an important gap in the
literature, and provide a deep insight in the nature of power
flow feasibility and voltage stability of power grids with
constant-power loads. In Part II of this paper continues this
approach by studying nonnegative power demands, sufficient
conditions for feasibility, and high-voltage solutions. We refer
to Part I for a list of the main results M1–M11 of this twin
paper.

Organization of Part II

Section V presents a necessary and sufficient LMI condition
for the feasibility of a vector of power demands, and a similar
condition for feasibility under small perturbation (M5). In
addition, the alternatives of these results are presented.

Section VI focuses on nonnegative power demands, and
studies when such power demands are feasible. First, we give
an alternative parametrization of D and discuss its relation to
the parametrization of D in Part I (M6). By means of this
parametrization we study the boundary of F (M7), and derive
a parametrization for the boundary of feasible power demands
in the nonnegative orthant (M8a). This allows us to refine the
necessary and sufficient condition M5 for nonnegative power
demands (M8b).

Section VII recovers and generalizes several sufficient con-
ditions in the literature in the context of DC power grids.
More specifically, we prove two sufficient conditions (M10)
which generalize the sufficient conditions in [7] and [8]. In
addition, we show that any power demand which is element-
wise dominated by a feasible power demand is feasible as well
(M9).

Section VIII focuses on the long-term voltage semi-stable
operating points. We show that any such operating point
is a strict high-voltage solution. As a consequence, the no-
tions of long-term voltage stable operation points, dissipation-
minimizing operation points and (strict) high-voltage solutions
coincide (M11).

Section IX concludes the paper.



Notation and matrix definitions

For a vector x =
(
x1 · · · xk

)>
we denote

[x] := diag(x1, . . . , xk).

We let 1 and 0 denote the all-ones and all-zeros vector,
respectively, and let I denote the identity matrix. We let their
dimensions follow from their context. All vector and matrix
inequalities are taken to be element-wise. We write x � y if
x ≤ y and x 6= y. We let ‖x‖p denote the p-norm of x ∈ Rk.

We define n := {1, . . . , n}. All matrices are square n× n
matrices, unless stated otherwise. The submatrix of a matrix
A with rows and columns indexed by α, β ⊆ n, respectively,
is denoted by A[α,β]. The same notation v[α] is used for
subvectors of a vector v. We let αc denote the set-theoretic
complement of α with respect to n. For a set S, the notation
int(S), cl(S), ∂S and conv(S) is used for the interior, closure,
boundary and convex hull of S, respectively.

We list some classical definitions from matrix theory.
Definition 4.1 ([10], Ch. 5): A matrix A is a Z-matrix if

Aij ≤ 0 for all i 6= j.
Definition 4.2 ([10], Thm. 5.3): A Z-matrix is an M-matrix

if all its eigenvalues have nonnegative real part.
Definition 4.3 ([10], pp. 71): A matrix A is irreducible if

for every nonempty set α $ n we have A[α,αc] 6= 0.

Definition 4.4: The Schur complement of M =

(
A B
C D

)
with respect to the principal submatrix D is denoted by

M/D := A−BD−1C.

V. NECESSARY AND SUFFICIENT CONDITIONS FOR
FEASIBILITY

We continue Part I of this paper by restating the geometric
characterization of F in Theorem 3.18 in terms of an LMI
condition. In the context of Problem 2.6, [8] presents a
necessary LMI condition for the feasibility of power demands,
and states that the LMI condition is also sufficient when the
set of feasible power demands is closed and convex, as is the
case here. The next theorem recovers this result and extends
the result for power demands which are feasible under small
perturbation.

Theorem 5.1 (M5a): A vector P̃c of power demands is
feasible (i.e., P̃c ∈ F) if and only if there does not exist a
positive vector ν ∈ Rn such that the (n+ 1)× (n+ 1) matrix(

[ν]YLL + YLL[ν] [ν]I∗L
([ν]I∗L)> 2ν>P̃c

)
= 2

(
h(ν) 1

2 [ν]I∗L
1
2 ([ν]I∗L)> ν>P̃c

)
(63)

is positive definite. Similarly, P̃c is feasible under small
perturbation (i.e., P̃c ∈ int(F)) if and only if there does not
exist a positive vector ν ∈ Rn such that (63) is positive semi-
definite.

Proof: We will prove the logical transposition.
(⇐): Without loss of generality we assume that ‖ν‖1 = 1.

If (63) is positive semi-definite, then h(ν) is positive semi-
definite. It follows from Lemmas B.8 and B.9 that h(ν) is
an irreducible M-matrix. Let v > 0 be a Perron vector of

h(ν). Suppose that h(ν) is singular, then h(ν)v = 0 by
Proposition A.2. However, note that for t ∈ R we have(
tv
1

)>(
h(ν) 1

2 [ν]I∗L
1
2 ([ν]I∗L)> ν>P̃c

)(
tv
1

)
= tv>[ν]I∗L + ν>P̃c,

which is a nonconstant line in t since v>[ν]I∗L > 0, and is
not bounded from below. This contradicts the assumption that
(63) is positive semi-definite. Hence h(ν) must be positive
definite and ν ∈ Λ1. Alternatively, if (63) is positive definite,
then h(ν) is positive definite. If h(ν) is positive definite, then
by the Haynsworth inertia additivity formula ([11], Sec. 0.10)
(63) is positive definite (semi-definite) if and only if

ν>P̃c − 1
4 ([ν]I∗L)>h(ν)−1[ν]I∗L > (≥) 0. (64)

Using (35) and (38), we note that (64) is equivalent to

ν>P̃c > (≥) 1
4 ([ν]I∗L)>h(ν)−1[ν]I∗L = ‖ϕ(ν)‖2h(ν). (65)

Theorem 3.18 implies that P̃c is not feasible if and only if
there exists λ ∈ Λ such that P̃c 6∈ Hλ, or equivalently,
λ>P̃c > ‖ϕ(λ)‖2λ. Thus, if (63) is positive definite, then the
strict inequality in (65) holds and P̃c is not feasible. Moreover,
if equality in (65) holds then

ν>P̃c = ‖ϕ(ν)‖2h(ν) = ν>Pc(ϕ(ν)).

Lemma 3.9 implies that P̃c = Pc(ϕ(ν)), and thus P̃c ∈ ∂F
by Theorem 3.14. Thus, if (63) is positive semi-definite, then
P̃c 6∈ F or P̃c ∈ ∂F , and therefore P̃c 6∈ int(F).

(⇒): The converse is obtained by reversing the steps.
Theorem 5.1 presents a necessary and sufficient LMI con-
ditions for the feasibility (under small perturbation) of a
DC power grid with constant-power loads. A more common
formulation of Theorem 5.1 as an LMI condition can be
obtained by replacing [ν] by a positive definite diagonal matrix
D, and replacing ν>P̃c by 1>DP̃c (cf. [8]).

Note that Theorem 5.1 shows that power flow feasibility
and the positive definiteness of (63) are mutually exclusive.
By considering the alternative of the latter condition we may
obtain an equivalence of power flow feasibility instead.

Theorem 5.2 (M5b): A vector P̃c of power demands is fea-
sible (i.e., P̃c ∈ F) if and only if there exists a nonzero sym-
metric positive semi-definite matrix Z = Z> ∈ R(n+1)×(n+1)

such that

trace

(
Z

(
h(ei)

1
2 [ei]I∗L

1
2 ([ei]I∗L)> e>i P̃c

))
= 0 (66)

for all i = 1, . . . , n. Similarly, P̃c is feasible under small
perturbation (i.e., P̃c ∈ int(F)) if and only if there exists a
symmetric positive definite matrix Z = Z> ∈ R(n+1)×(n+1)

such that (66) holds for all i.
Proof: For i = 1, . . . , n we define

Ai :=

(
h(ei)

1
2 [ei]I∗L

1
2 ([ei]I∗L)> e>i P̃c

)
By Theorem 5.1, a vector P̃c of power demands is feasible
(i.e., P̃c ∈ F) if and only if (63), which is equivalent to
2
∑
i λiAi, is not positive definite for all positive vectors

λ ∈ Rn. Note that h(λ) (and hence (63)) is never positive



definite if λ 6> 0 since YLL has positive diagonal elements.
Hence a vector P̃c of power demands is feasible (i.e., P̃c ∈ F)
if and only if (63) is not positive definite for all λ ∈ Rn.
It follows from Theorem 1 of [12] that (63) is not positive
definite for all λ ∈ Rn if and only if there exists a nonzero
symmetric positive semi-definite Z = Z> ∈ R(n+1)×(n+1)

such that trace (ZAi) = 0 for all i. Analogously, by Theorem
2 of [12] it follows that (63) is not positive semi-definite for
all λ ∈ Rn if and only if there exists a symmetric positive
definite Z = Z> ∈ R(n+1)×(n+1) such that trace (ZAi) = 0
for all i.

Theorem 5.1 and Theorem 5.2 give a description of the
power flow feasibility in terms of LMI problems and semi-
definite programming problems. Since computational tools for
such problems are widely available, these results may have a
promising application for the assessment of power flow fea-
sibility in a practical setting. As an example, the existence of
equilibria to the dynamical DC power grid (15) of Section II-C
can be determined by Theorem 5.1 or Theorem 5.2. The study
of these results and their performance for benchmark power
grids are an interesting topic for further research.

VI. NONNEGATIVE FEASIBLE POWER DEMANDS

In this section we study the feasibility of nonnegative
power demands (i.e., power demands P̃c such that P̃c ≥ 0).
Recall that in Part I we consider constant-power loads which
could both drain power and inject power. However, practical
applications of DC power grids often deal with constant-power
loads that do not inject power into the network, in which
case the power demands are nonnegative. The goal of this
section is to refine the result of Part I for such power demands.
In particular we show that the necessary and sufficient LMI
condition for the feasibility of a vector of power demands
P̃c ∈ Rn (Theorem 5.1) can be refined, leading to a condition
that provides an alternative method to determine if the power
flow is feasible.

This section is structured as follows. We first identify
the operating points corresponding to a nonnegative power
demand (Lemma 6.1). In addition we present a refinement for
the geometric characterization of Theorem 3.18 (Lemma 6.3),
which motivates us to study the boundary of F in more
detail. To study this boundary we deduce an alternative
parametrization of D (Theorem 6.6), which is in a sense dual
to the parametrization in Theorem 3.7. We subsequently give
a parametrization of the boundary of F (Theorem 6.8). This
parametrization gives rise to a parametrization of the boundary
of F in the nonnegative orthant (Theorem 6.12). We then
reformulate the geometric characterization (Corollary 6.14),
and refine the necessary and sufficient LMI condition of
Theorem 5.1 for nonnegative power demands (Theorem 6.15).

A. Operating points and a geometric characterization for
nonnegative power demands

We are interested in the nonnegative feasible power de-
mands, which are described by the set F ∩N , where

N := { ν ∈ Rn | ν ≥ 0 }
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Fig. 7. A plot of the voltage domain for a power grid with two load nodes.
The blue area corresponds to the set D of long-term voltage stable operating
points. The brown area indicates the operating points corresponding to a
nonnegative power demand. The green area corresponds to the vectors in
M, which contains the set cl(D). The black operating points correspond to
the black power demands in Figure 8.

denote the nonnegative vectors. The next lemma characterizes
the operating points which correspond to a nonnegative power
demand.

Lemma 6.1: A feasible power demand P̃c is nonnegative
(i.e., P̃c ∈ F ∩ N ) if and only if the operating points ṼL
associated to P̃c satisfy YLLṼL ≤ YLLV ∗L = I∗L.

Proof: Since operating points are assumed to be positive,
we have ṼL > 0. Hence

P̃c = Pc(ṼL) = [ṼL]YLL(V ∗L − ṼL) ≥ 0

if and only if YLL(V ∗L − ṼL) = I∗L − YLLṼL ≥ 0, where we
used (6).

Figure 7 illustrates the location of these operating points in
the voltage domain.

Lemma 6.1 shows that all operating points corresponding
to a positive power demand lie in the polyhedral set{

ṼL ∈ Rn
∣∣∣ ṼL > 0, YLLṼL ≤ I∗L

}
. (67)

Note that equality holds in YLLṼL ≤ I∗L if and only if
ṼL = V ∗L , which corresponds to the power demand P̃c = 0.
The next result shows that the vector of open-circuit voltages
V ∗L element-wise strictly dominates all operating points corre-
sponding to a nonzero nonnegative power demand.

Corollary 6.2: Let P̃c 6= 0 be a nonnegative feasible power
demand, then any operating point ṼL associated to P̃c satisfies
ṼL < V ∗L . Hence, (67) is bounded.

Proof: The matrix YLL is an irreducible M-matrix, and
hence its inverse is positive by [10, Thm. 5.12]. By Lemma 6.1
we have YLL(V ∗L − ṼL) ≥ 0. Since Pc(V ∗L ) = 0 and P̃c 6= 0
it follows that ṼL 6= V ∗L and therefore YLL(V ∗L − ṼL) 	 0.
Multiplying this inequality by the positive matrix YLL

−1

implies that V ∗L − ṼL > 0.
Using Theorem 3.18 we present a geometric characteriza-

tion of F ∩N .



Lemma 6.3: The set F ∩ N is closed, convex, bounded,
and is the intersection over all λ ∈ Λ1 of the half-spaces Hλ

for which P (ϕ(λ)) is nonnegative, i.e.,

F ∩N = N ∩
⋂

λ∈Λ1: Pc(ϕ(λ))≥0

Hλ.

Proof: The set F ∩ N is the intersection of closed convex
sets, and is therefore closed and convex. Note that h(1) =
YLL, ϕ(1) = 1

2V
∗
L , Pc(ϕ(1)) = Pmax, and that (22) is

equivalent to the inclusion

F ⊆ H1 =
{
y
∣∣ 1>y ≤ 1>Pmax

}
.

It follows that F ∩N ⊆ H1 ∩N . The set F ∩N is bounded
since H1 ∩N is bounded. It follows from Theorem 3.18 that

F ∩N = N ∩
⋂
λ∈Λ1

Hλ.

Since F ∩ N is closed and convex, it coincides with the
intersection of its supporting half-spaces (see Section III-C).
Theorem 3.12 identifies all supporting half-spaces of F , and
in particular shows that Pc(ϕ(λ)) is the unique point of
support associated to the half-space Hλ. By definition, Hλ

is also a supporting half-space for F ∩ N if and only if
Pc(ϕ(λ)) ∈ F ∩ N , which is equivalent to Pc(ϕ(λ)) ≥ 0.

The power demands Pc(ϕ(λ)) for λ ∈ Λ1 describe
the boundary of F (see Corollary 3.20 and Theorem 3.7).
Lemma 6.3 characterizes all nonnegative feasible power de-
mands in terms of the boundary in the nonnegative orthant (i.e.,
∂F ∩N ). In its current form, this requires the identification of
all λ such that λ ∈ Λ and Pc(ϕ(λ)) ≥ 0, which is a nontrivial
computational problem. In the remainder of this section we
deduce an alternative parametrization of the boundary of F in
the nonnegative orthant. This parametrization leads to a more
constructive description of all such λ.

B. An alternative parametrization of D
In order to parametrize the boundary of F in the nonneg-

ative orthant, we study the set D of long-term voltage stable
operating points in more detail. In Part I of this paper we have
parametrized the set D and its boundary by means of the set Λ1

(see Theorem 3.7). In the following we present an alternative
parametrization of D, which is dual to the parametrization
in Theorem 3.7, in the sense that we parametrize D by the
(right) Perron vector of − ∂Pc

∂VL
(ṼL) instead of its transpose

− ∂Pc

∂VL
(ṼL)>.

We introduce the following definitions. For a vector µ ∈ Rn
we introduce the notation

g(µ) := [µ]YLL + [YLLµ]. (68)

Note that g(µ) is linear in µ, and that for any vector v we
have g(µ)v = g(v)µ. By using (11) and (6) we observe that

∂Pc
∂VL

(ṼL) = [YLLV
∗
L ]− [ṼL]YLL − [YLLṼL]

= [I∗L]− g(ṼL). (69)

Analogous to Λ we define the set

M := { µ | g(µ) is a nonsingular M-matrix } .

Appendix E lists several properties of the setM. In particular,
Lemma A.1 shows that M is an open cone which lies in the
positive orthant, and that M is simply connected.

Recall that Z-matrices, M-matrices and irreducible matrices
were defined in Definitions 4.1-4.3. Appendix A lists multiple
properties of such matrices. Recall the following proposition
from Part I of this paper.

Proposition 6.4 (Proposition 3.1 of Part I): Let A be an
irreducible Z-matrix. There is a unique eigenvalue r of A with
smallest (i.e., “most negative”) real part. The eigenvalue r,
known as the Perron root, is real and simple. A corresponding
eigenvector v, known as a Perron vector, is unique up to
scaling, and can be chosen such that v > 0.

The next lemma relates the Perron root and Perron vector
of the Jacobian of Pc to the set M.

Lemma 6.5: Let r ∈ R and µ ∈ Rn such that r ≥ 0 and
µ > 0. The Jacobian − ∂Pc

∂VL
(ṼL) is an irreducible M-matrix

with Perron root r and Perron vector µ if and only if g(µ) is
an M-matrix (i.e., µ ∈M) and ṼL satisfies

ṼL = g(µ)−1[µ](I∗L + r1). (70)

Proof: (⇒): The matrix YLL is an irreducible Z-matrix
and µ > 0, and so g(µ) is an irreducible Z-matrix by
Propositions A.3 and A.4 of Part I. We let s and v > 0 denote
respectively the Perron root and Perron vector of g(µ). The
matrix − ∂Pc

∂VL
(ṼL) is an M-matrix, and therefore a Z-matrix.

Lemma 3.2 states that − ∂Pc

∂VL
(ṼL) is a Z-matrix if and only

if V ∗L > 0, and so ṼL > 0. Using the fact that (r, µ) is an
eigenpair to − ∂Pc

∂VL
(ṼL) and substituting (69), we observe that

rµ = − ∂Pc
∂VL

(ṼL)µ = g(ṼL)µ− [I∗L]µ = g(µ)ṼL − [µ]I∗L.

By rearranging terms it follows that

[µ]I∗L + rµ = g(µ)ṼL. (71)

Multiplying (71) by v> results in

v>([µ]I∗L + rµ) = v>g(µ)ṼL = sv>ṼL. (72)

Note that ṼL > 0, v > 0, µ > 0, r ≥ 0 and I∗L 	 0. It
follows that the left hand side of (72) is positive. Since v>ṼL
is also positive, we deduce that the Perron root s is positive.
This means that g(µ) is a nonsingular M-matrix (i.e., µ ∈M),
and that (70) follows from (71).

(⇐): If µ ∈ M, then µ > 0 by Lemma A.1. The rest of
the proof follows by reversing the steps of the “⇒”-part.

Note that (70) is invariant under scaling of µ, and since M
is a cone we may normalize µ. For this purpose we define

M1 :=M∩ { µ | ‖µ‖1 = 1 } =M∩
{
µ
∣∣ 1>µ = 1

}
.

Lemma 6.5 and Corollary 3.4 give rise to an alternative
parametrization of D.



Theorem 6.6 (M6): The set D of long-term voltage stable
operating points, its closure cl(D), and its boundary ∂D are
parametrized by

D =
{
g(µ)−1[µ](I∗L + r1)

∣∣ µ ∈M1, r > 0
}

;

cl(D) =
{
g(µ)−1[µ](I∗L + r1)

∣∣ µ ∈M1, r ≥ 0
}

;

∂D =
{
g(µ)−1[µ]I∗L

∣∣ µ ∈M1

}
.

Furthermore, the map

(µ, r) 7→ g(µ)−1[µ](I∗L + r1)

from M1 × R≥0 to cl(D) is a bicontinuous map.
The proof of Theorem 6.6 is analogous to the proof of

Theorem 3.7, and is therefore omitted.
To simplify notation, we define for µ ∈M the map

ψ(µ) := g(µ)−1[µ]I∗L. (73)

Note that Theorem 6.6 implies that ψ(M1) = ∂D, which is
a parametrization of the boundary of D.

Figure 7 illustrates that cl(D) is in fact a subset of M1,
which is shown is Lemma A.2.

Theorem 3.7 and Theorem 6.6 present two different
parametrizations of ∂D. The next lemma relates these two
parametrizations, and will be instrumental for identifying
which λ ∈ Λ satisfy Pc(ϕ(λ)) ≥ 0 in Lemma 6.3.

Lemma 6.7: Let ṼL ∈ ∂D, then there exist
1) a unique vector λ ∈ Λ1 such that ṼL = ϕ(λ);
2) a unique vector µ ∈M1 such that ṼL = ψ(µ);
3) a positive scalar c such that

[λ]ṼL = cµ. (74)

Consequently, µ may be expressed in terms of λ, and vise
versa, by

µ = (λ>ϕ(λ))−1[λ]ϕ(λ) ∈M1; (75)

λ = (1>[ψ(µ)]−1µ)−1[ψ(µ)]−1µ ∈ Λ1. (76)

Proof: The existence and uniqueness of λ and µ follows
respectively from Theorem 3.7 and Theorem 6.6. Since YLL
is symmetric we have

− ∂Pc
∂VL

(ṼL)[ṼL] = [ṼL]YLL[ṼL] + [ṼL][YLL(ṼL − V ∗L )]

= −[ṼL]
∂Pc
∂VL

(ṼL)>. (77)

Note that − ∂Pc

∂VL
and its transpose are singular M-matrices

by Corollary 3.4, and are irreducible by Lemma 3.2 since
ṼL > 0. Proposition A.2 states that the kernels of − ∂Pc

∂VL
and

its transpose are spanned by any of their respective Perron
vectors. Hence, if λ ∈ Λ1 is such that ṼL = ϕ(λ), then λ in
a Perron vector of − ∂Pc

∂VL
(ṼL)> by Lemma 3.6. We deduce

from (77) that

0 = −[ṼL]
∂Pc
∂VL

(ṼL)>λ = − ∂Pc
∂VL

(ṼL)[ṼL]λ.

It follows that [ṼL]λ spans in the kernel of − ∂Pc

∂VL
(ṼL).

Lemma 6.5 implies that (74) holds for some scalar c. Since
ṼL > 0, λ > 0 and µ > 0 we have c > 0. Moreover,

since µ>1 = 1, multiplying (74) by 1> yields c = λ>ṼL =
λ>ϕ(λ). By taking c to the other side of (74) we obtain
(75). Similarly, since λ>1 = 1, multiplying (74) by 1>[ṼL]−1

yields 1 = 1>[ṼL]−1µc = 1>[ψ(µ)]−1µc. By multiplying
(74) by [ψ(µ)]−1 we obtain (76).

Lemma 6.7, and in particular (74), establishes a duality
between the two parametrizations of ∂D. Note that (75) and
(76) describe their correspondence.

C. Two parametrizations of the boundary of F
We continue by studying parametrizations of the bound-

ary of F . Corollary 3.20 states that ∂D is in one-to-one
correspondence with ∂F . Since ∂D is parametrized both by
ϕ(λ) for λ ∈ Λ1 (Theorem 3.7) and by ψ(µ) for µ ∈ M1

(Theorem 6.6), it follows that ∂F can be parametrized as

∂F = { Pc(ϕ(λ)) | λ ∈ Λ1 } = { Pc(ψ(µ)) | µ ∈M1 } .
The next theorem gives an alternative formulation for both of
these parametrizations.

Theorem 6.8 (M7): Let P̃c ∈ ∂F , then there exist unique
vectors ṼL ∈ ∂D and µ ∈ M1 such that P̃c = Pc(ṼL) and
ṼL = ψ(µ). These vectors satisfy

P̃c = [ṼL]2[µ]−1YLLµ. (78)

This implies that the boundary of F is parametrized by

∂F =
{

[ψ(µ)]2[µ]−1YLLµ
∣∣ µ ∈M1

}
. (79)

Proof: The existence and uniqueness of ṼL and µ follows
respectively from Corollary 3.20 and Theorem 6.6. By (73),
(68) and (6) we have

ψ(µ) = g(µ)−1[µ]I∗L
= ([µ]YLL + [YLLµ])−1[µ]YLLV

∗
L (80)

= V ∗L − ([µ]YLL + [YLLµ])−1[YLLµ]V ∗L .

We deduce that

[µ]YLL(V ∗L − ψ(µ))

= [µ]YLL([µ]YLL + [YLLµ])−1[YLLµ]V ∗L . (81)

Observe that for any two square matrices A,B such that A+B
is nonsingular we have the identity1

A(A+B)−1B = B(A+B)−1A. (82)

Using (82) with A = [µ]YLL and B = [YLLµ] in (81) yields

[µ]YLL(V ∗L − ψ(µ))

= [YLLµ]([µ]YLL + [YLLµ])−1[µ]YLLV
∗
L

= [YLLµ]ψ(µ) = [ψ(µ)]YLLµ, (83)

where we substituted (80). By (83) it follows that

Pc(ψ(µ)) = [ψ(µ)]YLL(V ∗L − ψ(µ))

= [ψ(µ)][µ]−1[ψ(µ)]YLLµ = [ψ(µ)]2[µ]−1YLLµ,

1This identity may be verified by adding A(A+B)−1A to both sides of
the equation and simplifying.



which proves (79). Since P̃c = Pc(ψ(µ)) and ṼL = ψ(µ) we
have P̃c = [ṼL]2[µ]−1YLLµ, which proves (78).

The duality of Lemma 6.7 implies the following corollary.
Corollary 6.9 (M7): Let P̃c ∈ ∂F , then there exists unique

vectors ṼL ∈ ∂D and λ ∈ Λ1 such that P̃c = Pc(ṼL) and
ṼL = ϕ(λ). These vectors satisfy

P̃c = [ṼL][λ]−1YLL[λ]ṼL. (84)

This implies that the boundary of F is parametrized by

∂F =
{

[ϕ(λ)][λ]−1YLL[λ]ϕ(λ)
∣∣ λ ∈ Λ1

}
. (85)

D. The boundary of F in the nonnegative orthant

Theorem 6.8 gives an explicit relation between the boundary
of F and the vectors µ ∈M1. The next lemma characterizes
all µ ∈ M1 for which the corresponding power demand in
∂F lies in the nonnegative orthant.

Lemma 6.10: Given P̃c ∈ ∂F , let ṼL ∈ ∂D and µ ∈ M1

be the unique vectors so that P̃c = Pc(ṼL) and ṼL = ψ(µ),
then P̃c ∈ N if and only if YLLµ ∈ N . Consequently, the
boundary of F in the nonnegative orthant is parametrized by

∂F ∩N = { Pc(ψ(µ)) | µ ∈M1, YLLµ ∈ N } .

Proof: The existence and uniqueness of ṼL and µ follow
respectively from Corollary 3.20 and Theorem 6.8. Note that
ṼL > 0, and µ > 0 by Lemma A.1. Hence, it follows from
(78) that P̃c ≥ 0 if and only if YLLµ ≥ 0. The parametrization
follows directly from Theorem 6.8.

Lemma 6.10 shows that any power demand P̃c in ∂F ∩N
is uniquely associated to the vector YLLµ in N . Conversely,
we now show that any nonzero vector ν in N is, up to scaling
of ν, is uniquely associated to a power demand in ∂F ∩ N .
We require the following lemma.

Lemma 6.11: For each nonzero vector ν ∈ N we have
YLL

−1ν ∈M.
Proof: It suffices to show that g(YLL

−1ν) is a nonsingular
M-matrix. Note that

g(YLL
−1ν) = [YLL

−1ν]YLL + [ν].

The matrix YLL is a nonsingular irreducible M-matrix, and
its inverse is a positive matrix by [10, Thm. 5.12]. Since
ν 	 0 it follows that YLL−1ν > 0. Hence [YLL

−1ν]YLL is
a nonsingular M-matrix by Proposition A.3:5. Since ν 	 0,
Proposition A.3:6 implies that [YLL

−1ν]YLL + [ν] is a non-
singular M-matrix.

We normalize the nonzero vectors in N by

N1 := N ∩ { ν | ‖ν‖1 = 1 }
=
{
ν ∈ Rn

∣∣ ν ≥ 0, 1>ν = 1
}
.

(86)

We remark that N1 is known as the standard n− 1-simplex.
Lemma 6.10 and Lemma 6.11 suggest that each ν ∈ N1

is uniquely associated to a vector µ ∈ M1 for which the
associated power demand Pc(ψ(µ)) is nonnegative. Since
there is a one-to-one correspondence between M1 and Λ1

by Lemma 6.7, this would mean that there is a one-to-one
correspondence between N1, and the vectors λ ∈ Λ1 for which

the associated power demand Pc(ϕ(λ)) is nonnegative. To this
end we define for nonzero ν ∈ N the map

χ(ν) :=
[
ψ(YLL

−1ν)
]−1

YLL
−1ν (87)

=
[
[YLL

−1ν]−1g
(
YLL

−1ν
)−1

[YLL
−1ν]I∗L

]−1

1.

Since YLL is symmetric we have for all µ > 0 that

[µ]−1g(µ)[µ] = (YLL + [µ]−1[YLLµ])[µ] = g(µ)> (88)

by using (68), and hence χ(ν) can also be written as

χ(ν) =
[
g
(
YLL

−1ν
)−> I∗L]−1

1. (89)

The following theorem establishes a one-to-one correspon-
dence between the set N1 and the sets ∂F , ∂D, M1 and Λ1

for which their associated power demands are nonnegative. In
addition, we present a parametrization of the boundary of F
restricted to the nonnegative orthant, in terms of N1.

Theorem 6.12 (M8a): There is a one-to-one correspondence
between the following sets:

i) The nonnegative feasible power demands P̃c on the
boundary of F (i.e., P̃c ∈ ∂F ∩N );

ii) The operating points ṼL on the boundary of D such that
YLLṼL ≤ I∗L;

iii) The vectors µ ∈M1 such that YLLµ ∈ N ;
iv) The vectors λ ∈ Λ1 such that YLL[λ]ϕ(λ) ∈ N ;
v) The vectors ν ∈ N1.

These correspondences satisfy the equations

P̃c = Pc(ṼL);

ṼL = ψ(µ) = ψ(YLL
−1ν)

= ϕ(λ) = ϕ(χ(ν));

µ ∝ [λ]ϕ(λ) ∝ YLL−1ν;

λ ∝ [ψ(µ)]−1µ ∝ χ(ν);

ν ∝ YLL[λ]ϕ(λ) ∝ YLLµ;

where by ∝ we mean that equality holds up to a positive
scaling factor. In particular, χ is a one-to-one correspondence
between N1 and the set iv), up to scaling. Moreover, the
boundary of F in the nonnegative orthant is parametrized by

∂F ∩N =
{
Pc(ψ(YLL

−1ν))
∣∣ ν ∈ N1

}
,

and the corresponding operating points are parametrized by{
ṼL ∈ ∂D

∣∣∣ Pc(ṼL) ≥ 0
}

=
{
ψ(YLL

−1ν))
∣∣ ν ∈ N1

}
.

Proof: (i↔ ii): The map Pc from ∂D to ∂F is a one-to-one
by Corollary 3.20. Lemma 6.1 therefore implies that the map
Pc from i) and ii) is one-to-one.

(i ↔ iii): The map ψ from M1 to ∂D is one-to-one by
Theorem 6.6, and hence Pc ◦ ψ from M1 to ∂F is one-to-
one. Lemma 6.10 therefore implies that the map Pc ◦ ψ from
i) to iii) is one-to-one.

(iii ↔ iv): Lemma 6.7 establishes that M1 and Λ1 are in
one-to-one correspondence, and that ṼL = ψ(µ) = ϕ(λ). Note
that (75) and (76) imply that µ ∝ [λ]ϕ(λ) and λ ∝ [ψ(µ)]−1µ.
Substituting (74) in iii) results in iv) and are therefore equiv-
alent.

(v ↔ iii): Lemma 6.11 shows that the map v 7→
(1>YLL

−1ν)−1YLL
−1ν is a map N1 to M1. This map is



injective since YLL−1 is nonsingular, and is therefore one-to-
one on its image, which is exactly the set iii). This shows that
µ ∝ YLL−1ν and ν ∝ YLLµ.

Since µ ∝ [λ]ϕ(λ) and ν ∝ YLLµ, it follows that ν ∝
YLL[λ]ϕ(λ). Due to (73) and (88) we have

[µ]−1ψ(µ) = [µ]−1g(µ)−1[µ]I∗L = g(µ)−>I∗L.
Since λ ∝ [ψ(µ)]−1µ, it follows that λ ∝ [g(µ)−>I∗L]−11.
Because µ ∝ YLL

−1ν, we deduce that λ ∝ χ(ν) by (89).
Thus, the map χ from N1 to Λ is one-to-one, up to scaling.

Finally, the parametrizations follow directly from (i ↔ iii)
and (v ↔ iii).

Remark 6.13: From a computation standpoint, the
parametrization of ∂F ∩ N in Theorem 6.12 is cheaper to
compute than the parametrizations of ∂F in Theorem 6.8 or
Corollary 6.9. Indeed, to compute the set ∂F we require to
identify either M1 or Λ1 by Theorem 6.8 or Corollary 6.9,
respectively, which both are sets that are (in essence) described
in terms of the eigenvalues of n×n matrices. In contrast, the
parametrization of ∂F ∩ N in Theorem 6.12 is in terms of
the set N1, which is merely an n− 1-simplex and requires no
additional computation.

E. Refined results for nonnegative power demands

We conclude this section by presenting a refinement of The-
orem 3.18 and Theorem 5.1 for nonnegative power demands.
This is obtained by applying Theorem 6.12 to Lemma 6.3.

Theorem 6.12 states that the map χ is a one-to-one corre-
spondence between the set ν ∈ N1 and vectors λ ∈ Λ1 for
which the associated power demand Pc(ϕ(λ)) is nonnegative.
More specifically, we have

{ λ ∈ Λ1 | Pc(ϕ(λ)) ≥ 0 }
=
{

(1>χ(ν))−1χ(ν)
∣∣ ν ∈ N1

}
⊆ Λ1. (90)

By substituting this result in Lemma 6.3 we obtain a geometric
characterization of F in terms of N1.

Corollary 6.14: The set F ∩N is the intersection over all
ν ∈ N1 of the half-spaces Hχ(ν), i.e.,

F ∩N = N ∩
⋂
ν∈N1

Hχ(ν).

Proof: The statement follows from substituting (90) in
Lemma 6.3, and by noting the half-spaces Hλ are invariant
under scaling of λ.

We may now present a necessary and sufficient condition for
a vector of nonnegative power demands to be feasible. This
condition can be regarded as a refinement of Theorem 5.1
for nonnegative power demands, and is obtained from Corol-
lary 6.14 by rewriting the half-spaces Hχ(ν).

Theorem 6.15 (M8b): Let P̃c be a nonnegative power
demand (i.e., P̃c ∈ N ). The following are equivalent

i) P̃c is feasible (i.e., P̃c ∈ F ∩N );
ii) The inequality

χ(ν)>P̃c ≤ 1
2ν
>V ∗L (91)

holds for all ν ∈ N1;

iii) The inequality

‖P̃c‖• := max
ν∈N1

{
χ(ν)>P̃c
1
2ν
>V ∗L

}
≤ 1 (92)

holds,
where χ(ν) was defined in (87), where V ∗L are the open-circuit
voltages (6), and where N1 is the standard n−1-simplex (86).
More explicitly, (91) is equivalent to

1>
[(

[YLL
−1ν] + YLL

−1[ν]
)−1

V ∗L

]−1

P̃c ≤ 1
2ν
>V ∗L .

Similarly, P̃c is feasible under small perturbation (i.e., P̃c ∈
int(F)∩N ) if and only if the inequality in (91) holds strictly
for all ν ∈ N1, if and only if the inequality in (92) holds
strictly.

Proof: (i ⇔ ii): Corollary 6.14 implies that P̃c ∈ F ∩ N
if and only if P̃c ∈ N and P̃c ∈ Hχ(ν) for all ν ∈ N1. By
definition of Hλ, the latter is equivalent to

χ(ν)>P̃c ≤ ‖ϕ(χ(ν))‖2h(χ(ν)) (93)

for all ν ∈ N1 We continue by rewriting the right-hand side
of (93). Note that

‖ϕ(χ(ν))‖2h(χ(ν)) = ϕ(χ(ν))>h(χ(ν))ϕ(χ(ν))

= 1
2ϕ(χ(ν))>[χ(ν)]I∗L, (94)

where we substituted (38) and (35). By substituting (87) in
(94) it follows that the right-hand side of (93) equals

1
2ϕ(χ(ν))>[ψ(YLL

−1ν)]−1[YLL
−1ν]I∗L. (95)

Theorem 6.12 states that ϕ(χ(ν)) = ψ(YLL
−1ν), and hence

from (95) we deduce that the right-hand side of (93) equals
1
21>[YLL

−1ν]I∗L = 1
2ν
>YLL

−1I∗L = 1
2ν
>V ∗L .

where we used (6). The left-hand side of (91) can be rewritten
by observing in (89) that

g
(
YLL

−1ν
)−> I∗L = (YLL[YLL

−1ν] + [ν])−1I∗L
= ([YLL

−1ν] + YLL
−1[ν])−1YLL

−1I∗L
= ([YLL

−1ν] + YLL
−1[ν])−1V ∗L ,

where we used (68) and (6).
(ii ⇔ iii): Note that the right-hand side of (91) is positive

since ν 	 0 since ν ∈ N1, and V ∗L > 0 due to Lemma 2.3. The
equivalence of ii and iii follows immediately. The maximum
is well-defined since we maximize a continuous function over
the compact set N1.

Lemma 3.9 states that we have equality in (93) if and only if
P̃c = Pc(ϕ(χ(ν))). Theorem 6.12 implies that P̃c ∈ ∂F∩N if
and only if there exists ν ∈ N1 such that P̃c = Pc(ϕ(χ(ν))).
Hence, P̃c 6∈ ∂F ∩N if and only if equality in (91) does not
hold for all ν ∈ N1. Thus, P̃c ∈ int(F)∩N if and only if the
inequality in (91) holds strictly for all ν ∈ N1, if and only if
the inequality in (92) holds strictly.

The scalar ‖P̃c‖• defined in (92) provides an exact measure
for the feasibility of the power flow in the power grid, general-
izing the feasibility measures in [7], [6]. Indeed, Theorem 6.15
tells us that the power flow is feasible if and only if ‖P̃c‖• ≤ 1.



The relation between Theorem 6.15 and the sufficient condi-
tions from [7] and [6] is discussed in Section VII. Moreover,
if P̃c is feasible then the scalar 1−‖P̃c‖• provides a measure
for how close the power flow is to unfeasibility.

We note that the necessary and sufficient condition pre-
sented in Theorem 6.15 does not require the definiteness of any
matrices, in contrast to the necessary and sufficient conditions
in Theorem 5.1 and Theorem 5.2. Instead, Theorem 6.15,
and in particular (92), seeks to maximize a continuous scalar-
valued function over a compact domain. The prospect of this
observation is that may also use non-LMI based computational
techniques such as gradient descent algorithms to determine if
the power flow is feasible. However it is noted that an effective
application of this approach and a comparison with the LMI
approach of Theorem 5.1 and Theorem 5.2 requires a more
in-depth study of the maximization problem in (92), and in
particular of the possible concavity of the map ν 7→ ξ(ν)>P̃c

ν>V ∗L
.

These topics lie beyond the scope of this paper.
Remark 6.16: Note that the numerator and denominator in

(92) are invariant under scaling of ν. Hence, we may similarly
define ‖·‖• by taking the maximization over all ν ∈ N so that
1
2ν
>V ∗L = 1, in which case the denominator in (92) equals 1.
Remark 6.17: Similar results for positive power demand are

obtained by taking N = { ν ∈ Rn | ν > 0 } throughout this
section. In particular, analogous to Theorem 6.15, it can be
shown that a vector of positive power demands P̃c > 0 is
feasible if and only if (91) holds for all ν > 0, and similar
for feasibility under small perturbation.

VII. SUFFICIENT CONDITIONS FOR POWER FLOW
FEASIBILITY

In the remainder of this paper we return to the case where
power demands are not restricted to the nonnegative orthant. In
this section we prove two novel sufficient conditions for the
feasibility of a vector of power demands, which generalize
the sufficient conditions found in [6] and [7]. In addition we
show how the conditions in [6] and [7] are recovered from the
conditions proposed in this section.

The benefit of these sufficient conditions for power flow
feasibility over a necessary and sufficient condition such as
Theorem 5.1 is that they are cheaper to compute, and may
therefore be more suitable for practical applications. However,
since these sufficient condition are not necessary, they cannot
guarantee that a power demand is not feasible.

This section is structured as follows. First we show that
each feasible vector of power demands gives rise to a sufficient
condition for power flow feasibility (Lemma 7.1), and derive a
sufficient condition from Theorem 6.15 (Corollary 7.3). Next,
we propose a weaker sufficient condition (Theorem 7.5), which
generalizes the condition in [7] and identifies for which vectors
the latter condition is tight. Finally we show that Theorem 7.5
generalizes the sufficient condition in [6], and argue why the
latter condition is not tight in general (Lemma 7.9).

A. Sufficient conditions by element-wise domination
Lemma 7.1 (M9): Let P̃c be a feasible power demand (i.e.,

P̃c ∈ F). If a power demand P̂c satisfies P̂c � P̃c, then P̂c is
feasible under small perturbation (i.e., P̂c ∈ int(F)).

Proof: Since P̃c ∈ F we have by Theorem 3.18 that

λ>P̃c ≤ ‖ϕ(λ)‖2h(λ)

for all λ ∈ Λ, where we used (42). Note that λ > 0 for λ ∈ Λ
by Lemma B.6. Since P̂c � P̃c we have

λ>P̂c < λ>P̃c ≤ ‖ϕ(λ)‖2h(λ), (96)

for all λ ∈ Λ. Hence, P̂c ∈ F by Theorem 3.18 and (42).
Since the inequality in (96) is strict, Lemma 40 implies that
P̂c 6= Pc(ϕ(λ)) for all λ ∈ Λ, and therefore P̂c 6∈ ∂F by
Corollary 3.20 and Theorem 3.7.

Lemma 7.1 shows that any feasible power demand gives
rise to a sufficient condition for power flow feasibility. In
particular, note that the power demand 0 = Pc(V

∗
L ) is feasible

under small perturbation. Lemma 7.1 therefore implies the
following corollary.

Corollary 7.2: Any nonpositive power demand is feasible
under small perturbation.

We remark that a vector of nonpositive power demands
corresponds to a case in which none of the power loads
drain power from the grid and therefore behave as sources.
Intuitively it is clear that such a vector of power demands is
feasible. Consequently, some of the sources may act as loads
and drain the power that is not dissipated in the lines.

Recall that Theorem 6.15 gives a necessary and sufficient
condition for the feasibility of a nonnegative power demand.
Lemma 7.1 allows us to extend Theorem 6.15 to a sufficient
condition for vectors of power demands which have negative
entries. We define max(a, b) ∈ Rn as the vector obtained by
taking the element-wise maximum of a, b ∈ Rn, i.e.,

max(a, b)i := max(ai, bi).

Note for P̃c ∈ Rn that max(P̃c,0) is nonnegative, and that
P̃c ≤ max(P̃c,0). Hence, Theorem 6.15 and Lemma 7.1
directly imply the following sufficient condition for the feasi-
bility of a vector of power demands.

Corollary 7.3 (M10): A vector of power demands P̃c ∈ Rn
is feasible (i.e., P̃c ∈ F) if

χ(ν)>max(P̃c,0) ≤ 1
2ν
>V ∗L

for all ν ∈ N1, or equivalently, if

‖max(P̃c,0)‖• ≤ 1,

where ‖ · ‖• was defined in (92).
Note that Corollary 7.3 is necessary and sufficient for

nonnegative power demands by Theorem 6.15.

B. A generalization of the sufficient condition of Simpson-
Porco et al. (2016)

We proceed by studying known sufficient conditions in the
literature and comparing them to Corollary 7.3. The paper
[7] studies the decoupled reactive power flow equations for
lossless AC power grids with constant power loads. The
analysis and results in [7] translate naturally to DC power
grids. In [7] a sufficient condition for the feasibility of a vector
of constant power demands is proposed, which we state in the
context of DC power grids.
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Fig. 8. A depiction of the set F of feasible power demands for a power
grid with two loads. The yellow area corresponds to the sufficient condition
in Theorem 7.5. The green shaded area corresponds to the set described by
the sufficient condition in [7] (see Proposition 7.4), and does not include
the yellow boundary. The black points are the power demands for which
the condition in [7] is tight, and correspond to the black operating points
in Figure 7. The red area corresponds to the sufficient condition in [6] (see
Proposition 7.8). The red point indicates a point of intersection of the boundary
of the condition in [6] with either the boundary of the condition in [7], or the
boundary of the condition in Theorem 7.5.

Proposition 7.4 ([7, Supplementary Theorem 1]): Let P̃c be
a nonnegative vector of power demands (i.e., P̃c ∈ N ), then
P̃c is feasible under small perturbation (i.e., P̃c ∈ int(F)) if

‖( 1
4 [V ∗L ]YLL[V ∗L ])−1P̃c‖∞ < 1. (97)

This sufficient condition for feasibility is tight since we have

‖( 1
4 [V ∗L ]YLL[V ∗L ])−1Pmax‖∞ = 1,

where Pmax ∈ ∂F is the maximizing power demand defined
in Lemma 2.18, and lies on the boundary of F .

Proposition 7.4 applies only to nonnegative power demands
and is not necessary in general. It is therefore weaker than
Theorem 6.15 and Corollary 7.3. The proof of Proposition 7.4
in [7] relies on a fixed point argument. The following result
generalizes Proposition 7.4, and identifies all power demands
for which the condition (97) is tight (i.e., the power demands
on the boundary of F so that equality in (97) holds).

Theorem 7.5 (M10): A vector of power demands P̃c is
feasible (i.e., P̃c ∈ F) if

( 1
4 [V ∗L ]YLL[V ∗L ])−1max(P̃c,0) ≤ 1, (98)

and feasible under small perturbation (i.e., P̃c 6∈ int(F)) if P̃c
is not of the form

(P̃c)[α] = 1
4 [(V ∗L )[α]]((YLL/(YLL)[αc,αc])(V

∗
L )[α];

(P̃c)[αc] = 0
(99)

for all nonempty α ⊆ n.
The proof of Theorem 7.5 is found in Appendix F. Note

that Theorem 7.5 is weaker than Corollary 7.3, but is cheaper
to compute. Proposition 7.4 is recovered from Theorem 7.5 as
follows.

Proof of Proposition 7.4: Let P̃c ∈ N which implies that
P̃c = max(P̃c,0). Let P̃c satisfy (97), which is therefore
equivalent to

−1 < ( 1
4 [V ∗L ]YLL[V ∗L ])−1max(P̃c,0) < 1. (100)

It follows from Theorem 7.5 that P̃c ∈ F . The latter inequality
in (100) is strict, and therefore P̃c lies in the interior of the
set described by (98), and hence P̃c ∈ int(F).

Theorem 7.5 states that the power demands described by
(99) are the only power demands which satisfy (98) and lie
on the boundary of F . The condition in (97) is therefore tight
for such power demands.

Remark 7.6: Note that if α = n in (99) we obtain the
maximizing power, since

1
4 [V ∗L ]YLL[V ∗L ]1 = 1

4 [V ∗L ]I∗L = Pmax,

by (6) and (23). The proof of Theorem 7.5 shows that the
the power demands described by (99) correspond to the
maximizing power demands of all power grids obtained by
Kron-reduction (see, e.g., [13]). The power flow of such power
grids is equivalent to power flow of the full power grid, with
the additional restriction that the currents at the loads indexed
by α vanish (i.e., (IL)[α] = 0).

C. On the sufficient condition of Bolognani & Zampieri (2015)

We conclude this section by showing that Theorem 7.5 also
generalizes the sufficient condition in [6]. The paper [6] studies
the power flow equation of an AC power grid with constant
power loads and a single source node. The analysis and results
in [6] translate naturally to DC power grids with a single
source node. The next lemma show that the results in [6] apply
to DC power grids with multiple sources as well, which allows
us to compare Theorem 7.5 and [6].

Lemma 7.7: Let P denote a DC power grid with constant
power loads with n loads and m sources. Let P̂ denote the
DC power grid with n loads and a single source, of which the
Kirchhoff matrix satisfies

Ŷ =

(
ŶLL ŶLS
ŶSL ŶSS

)
=

(
[V ∗L ]YLL[V ∗L ] −[V ∗L ]I∗L
−(I∗L)>[V ∗L ] (V ∗L )>I∗L

)
. (101)

and where the source voltage equals V̂S = 1. The feasibility
of the power flow equations of P and P̂ is equivalent.

Proof: We first verify that Ŷ is indeed a Kirchhoff matrix.
Note that [V ∗L ]YLL[V ∗L ]1 = [V ∗L ]I∗L by (6), and so Ŷ 1 = 0.
Also, since YLL is an irreducible Z-matrix, and V ∗L > 0 and
I∗L 	 0, Ŷ is also an irreducible Z-matrix, and therefore a
Kirchhoff matrix. The powers injected at the loads in power
grid P̂ satisfy

P̂L(V̂L) = [V̂L](ŶLLV̂L + ŶLS V̂S)

= [V̂L]([V ∗L ]YLL[V ∗L ]V̂L − [V ∗L ]I∗L)

= [V̂L][V ∗L ](YLL[V ∗L ]V̂L − YLLV ∗L ) = PL([V ∗L ]V̂L).

where we used (6) and (4). We therefore have P̂L(V̂L) =
PL(VL) by taking VL = [V ∗L ]V̂L. Hence, given Pc ∈ Rn, we
have that P̂L(V̂L) = Pc is feasible for some V̂L > 0 if and
only if PL(VL) = Pc is feasible for some VL > 0.



We continue by formulating the sufficient condition in [6].
We follow [6] and define for p ∈ [1,∞] the matrix norm

‖A‖?p := max
j
{‖A[j,n]‖p}, (102)

where A[j,n] denotes the j-th row of A. The sufficient con-
dition for power flow feasibility of [6] in the context of DC
power grids is given as follows.

Proposition 7.8 ([6, Thm. 1]): Let P̃c ∈ Rn be a vector of
power demands, then P̃c is feasible under small perturbation
(i.e., P̃c ∈ int(F)) if for some p, q ∈ [1,∞] such that 1

p + 1
q =

1 we have

‖( 1
4 [V ∗L ]YLL[V ∗L ])−1‖?q ‖P̃c‖p < 1. (103)

The proof of Proposition 7.8 in [6] also relies on a fixed
point argument. Proposition 7.8 is recovered from Lemma 7.1
and Proposition 7.4 as follows.

Proof: Let P̃c satisfy (103). Let P̂c ∈ N be such that
(P̂c)i = |(P̃c)i|. It follows that ‖P̂c‖p = ‖P̃c‖p, and hence
P̂c satisfies (103). The matrix YLL is an M-matrix, and hence
[V ∗L ]YLL[V ∗L ] is a M-matrix by Proposition A.3.5. Its inverse
is a positive matrix by [10, Thm. 5.12]. Let vj ∈ Rn be such
that (vj)> is the j-th row of ( 1

4 [V ∗L ]YLL[V ∗L ])−1. We have
vj > 0. By (102) it follows from (103) that for all j

‖vj‖q‖P̂c‖p < 1.

By Hölder’s inequality (see, e.g., [14, pp. 303]) we have

‖[vj ]P̂c‖1 ≤ ‖vj‖q‖P̂c‖p < 1.

Since [vj ]Pc ≥ 0 we know that ‖[vj ]P̂c‖1 = (vj)>P̂c. This
implies that (vj)>P̂c < 1 for all i, and hence

( 1
4 [V ∗L ]YLL[V ∗L ])−1P̂c < 1.

Hence (97) holds for P̂c, and P̂c ∈ int(F) by Proposition 7.4.
Since P̃c ≤ P̂c, Lemma 7.1 implies that P̃c ∈ int(F).

Our proof of Proposition 7.8 shows that the sufficient
condition in [6] for nonnegative power demands is more con-
servative in comparison to the sufficient condition in [7]. This
also shows that Theorem 7.5 generalizes both results. The next
lemma gives a more intuitive interpretation of the condition
(103), by showing that (103) describes the largest open p-ball
such that (97) holds for nonnegative power demands.

Lemma 7.9: Let p, q ∈ [1,∞] such that 1
p + 1

q = 1.
The sufficient condition for power flow feasibility (103) in
Proposition 7.8 describes the open ball centered at 0

B := { y ∈ Rn | ‖y‖p < r }
where the radius r = (‖( 1

4 [V ∗L ]YLL[V ∗L ])−1‖?q)−1 > 0 is the
largest scalar such that (97) holds for all P̃c ∈ B ∩ N .

Proof: We show that there exists a nonnegative vector
of power demands on the boundary of B such that such
that equality in (97) holds, which therefore defines to the
radius r. We continue our proof of Proposition 7.8. Let j
be such that ‖vj‖q = ‖( 1

4 [V ∗L ]YLL[V ∗L ])−1‖?q . If p 6= 1,
then equality in Hölder’s inequality ‖[vj ]P̃c‖1 ≤ ‖vj‖q‖P̃c‖p
holds if (P̃c)i = c((vj)i)

q−1 for all i and for any c ∈ Rn.
Consider the positive vector of power demands P̂c given by

(P̂c)i = c((vj)i)
q−1 and where c−1 = ‖vj‖qq . For this vector

we have ‖[vj ]P̂c‖1 = ‖vj‖q‖P̂c‖p = 1. Hence, by following
proof of Proposition 7.8, P̂c satisfies equality in both (97) and
(103). Thus, P̂c ∈ ∂B ∩ N , and ‖P̂c‖p = (‖vj‖q)−1 = r. If
p = 1, the same holds when we take P̂c = ei‖vj‖−1

∞ , where
i is a single index such that (vj)i = ‖vj‖∞, and (P̂c)i = 0
otherwise.

Note that P̂c constructed in the proof of Lemma 7.9 is not
necessarily of the form (99). Since (97) is tight only for such
points, this suggests that the condition (103) is not tight in
general. This is can be observed for p = q = 2 in Figure 8 by
the red dot, which does not lie on the boundary of F .

VIII. DESIRABLE OPERATING POINTS

We conclude this paper by showing that for each feasible
vector of power demands the different definitions of desirable
operating points in Part I (Definitions 2.10, 2.11 and 2.13)
identify the same unique operating point. It was shown in
[9] that for each feasible power demand there exists a unique
operating point which is a high-voltage solution, and that this
operating point is “almost surely” long-term voltage stable.
In addition, [9] states that this operating point is the unique
long-term voltage stable operating point if all power demands
have the same sign. The next theorem sharpens these results
by showing that the long-term voltage stable operating point
associated to a feasible vector of power demands is a strict
high-voltage solution.

Theorem 8.1 (M11): Let P̃c be a feasible vector of power
demands (i.e., P̃c ∈ F). Let ṼL ∈ cl(D) be such that ṼL is an
operating point associated to P̃c (i.e., P̃c = Pc(ṼL)), which
exists and is unique by Theorem 3.17. Suppose there exists
a vector Ṽ ′L ∈ Rn such that Ṽ ′L 6= ṼL and P̃c = Pc(Ṽ

′
L),

then Ṽ ′L < ṼL. Hence, ṼL is a strict high-voltage solution.
Moreover, 1

2 (Ṽ ′L + ṼL) lies on the boundary of D.
Proof: If P̃c ∈ ∂F , then by Corollary 3.20 the operating

point ṼL ∈ ∂D is the unique operating point associated to
P̃c. Hence a second operating point Ṽ ′L does not exist. The
uniqueness of ṼL implies that ṼL is a high-voltage solution
and is dissipation-minimizing.

If P̃c ∈ int(F), then by Corollary 3.21 we have ṼL ∈ D. We
define the vectors v := 1

2 (ṼL+ Ṽ ′L) and µ := 1
2 (ṼL− Ṽ ′L), and

the line γ(θ) := v+θµ. Note that γ(1) = ṼL and γ(−1) = Ṽ ′L.
Since ṼL ∈ D and Ṽ ′L 6∈ cl(D) we have ṼL 6= Ṽ ′L, and so
µ 6= 0. Lemma 3.9 implies that

Pc(γ(θ)) = Pc(v + θµ)

= Pc(v) + θ
∂Pc
∂VL

(v)µ− θ2[µ]YLLµ. (104)

Since P̃c = Pc(γ(1)) = Pc(γ(−1)), it follows from (104) that

∂Pc
∂VL

(v)µ = 0. (105)

We therefore have

Pc(γ(θ)) = Pc(v)− θ2[µ]YLLµ, (106)

which describes a half-line contained in F . Note also that
Pc(γ(θ)) = Pc(γ(−θ)) and γ(θ) 6= γ(−θ) if θ 6= 0,



which shows that the map Pc(VL) gives rise to a two-to-one
correspondence between the line γ(θ) and the half-line (106)
for θ 6= 0. The line γ(θ) crosses the boundary of D since
γ(1) ∈ D and γ(−1) 6∈ D. Let θ̂ be such that γ(θ̂) ∈ ∂D.
Corollary 3.20 implies that there does not exists V̂L 6= γ(θ̂)
such that Pc(γ(θ̂)) = Pc(V̂L). Hence, due to the two-to-
one correspondence between γ(θ) and (106) for θ 6= 0, we
conclude that θ̂ = 0 and γ(0) = v ∈ ∂D. Corollary 3.4
implies that − ∂Pc

∂VL
(v) is a singular M-matrix. Note that µ

lies in the kernel of − ∂Pc

∂VL
(v) due to (105), and it follows

from Lemma A.2 that ±µ > 0 and that µ spans the kernel
of − ∂Pc

∂VL
(v). Since γ(θ) intersects ∂D only when θ = 0, and

since γ(1) ∈ D and γ(−1) 6∈ cl(D), it follows that γ(θ) ∈ D
if and only if θ > 0. However, if µ < 0 then γ(θ) = v + θµ
is a negative vector for sufficiently large θ, which contradicts
that all vectors in cl(D) are positive. We conclude that µ > 0,
which by definition of µ implies that ṼL > Ṽ ′L. The operating
point ṼL is a strict high-voltage solution by Definition 2.13.

We conclude by proving that the different types of desirable
operating points defined in Section II-B describe one and the
same operating point.

Theorem 8.2 (M11): Let P̃c be a feasible vector of power
demands, and let ṼL be an associated operating point (i.e.,
P̃c = Pc(ṼL)). The following statements are equivalent:

i) ṼL is long-term voltage semi-stable (i.e., ṼL ∈ cl(D));
ii) ṼL is the unique long-term voltage semi-stable operating

point associated to P̃c;
iii) ṼL is dissipation-minimizing;
iv) ṼL is the unique dissipation-minimizing operating point

associated to P̃c;
v) ṼL is a high-voltage solution;

vi) ṼL is a strict high-voltage solution.
Proof: Theorem 3.17 guarantees the existence and unique-

ness of a long-term voltage semi-stable operating point V̂L
associated to P̃c. It therefore suffices to show that V̂L is
the unique operating point which satisfies statements iii)-vi)
individually. Theorem 8.1 implies that V̂L is a (strict) high-
voltage solution. Note that there exists at most one high-
voltage solution, since ṼL ≤ Ṽ ′L and Ṽ ′L ≤ ṼL imply that
ṼL = Ṽ ′L. Corollary 2.14 implies that V̂L is the unique
dissipation-minimizing operating point.

Theorem 8.2 shows that the desirable operating points
defined in Section II-B coincide, and that we may speak of a
single desired operating point. Moreover, in the context of the
dynamical power grid (15) of Section II-C, Theorem 8.2 states
that there exists a stable equilibrium that always minimizes
the total dissipation at steady state among all equilibria, and
elementwise strictly dominates the voltage potentials of all
other equilibria.

Remark 8.3: Note that none of the equivalent statements
in Theorem 8.2 depends on YSS , which is the matrix that
describes the interconnection of lines between the sources.
Indeed, recall that YSS does not appear in (9), and recall
from the proof of Proposition 2.12 that YSS is not relevant
for finding a dissipation-minimizing operating point. However,
from (14) we recall that the matrix YSS does affect the total

dissipated power in the grid. Consequently, YSS does affect
the total power that is dissipated when the operating point
of Theorem 8.2 is chosen. Put differently, the minimal total
power that is dissipated in the lines for a given vector Pc
of constant power demands is not independent of the lines
between the sources, despite the fact that the operating point
which achieves this minimum is independent of these lines.

Remark 8.4: In [9] it was shown that for a feasible vector
of power demands the algorithm proposed in [9] converges
to a high-voltage solution. By Theorem 8.2 this means that
this algorithm converges to the unique long-term voltage semi-
stable operating point associated to these power demands.

IX. CONCLUSION

In this paper we constructed a framework for the analysis
of the feasibility of the power flow equations for DC power
grids. Within this framework we unified and generalized the
results in the literature concerning this feasibility problem, and
gave a complete characterization of feasibility.

In Part II of this paper we showed that the feasibility (under
small perturbation) of a power demand can be decided by
an necessary and sufficient LMI condition. In addition we
gave a necessary and sufficient condition for the feasibility
(under small perturbation) for nonnegative power demands,
which provides an alternative method to determine power flow
feasibility. We have presented two novel sufficient conditions
for the feasibility of a power demand, which were shown
to generalize known sufficient conditions in the literature. In
addition we proved that any power demand dominated by a
feasible power demand is also feasible. Finally, we showed that
the operating points corresponding to a power demand which
are long-term voltage semi-stable, dissipation-minimizing, or
a (strict) high-voltage solution, are one and the same.

Further directions of research may concern the question if
and how the approach and/or results in this paper generalize
to general AC power grids. Other interesting directions of
research concern the feasibility of the power flow equations
with uncertain parameters, conditions for long-term voltage
(semi-)stability of an operating point, and the (non)convexity
of the set of such operating points. Furthermore, control
schemes which implement the proposed conditions for power
flow feasibility are of particular interest. Finally, it would be
interesting to see how the approach of this twin paper may be
applied to problems outside the topic of power systems.

APPENDIX

E. Properties of M
Lemma A.1: If µ ∈ M, then µ > 0. Moreover, M is an

open cone and is simply connected.
Proof: If µ ∈ M, then g(µ) = [µ]YLL + [YLLµ] is a non-

singular M-matrix, and therefore a Z-matrix. Recall that YLL
is an irreducible Z-matrix, which implies that (YLL)[i,ic] � 0
for all i. If µi < 0, then g(µ)[i,ic] = µi(YLL)[i,ic] 	 0, which
contradicts the fact that g(µ) is a Z-matrix. Hence µ ≥ 0.
We will show that a vector µ which contains zeros does not
yield an M-matrix. Suppose µ ∈ M such that µ[α] = 0 and



µ[αc] > 0 for some nonempty set α ⊆ n. Since µ[α] = 0, the
following submatrices of [µ]YLL + [YLLµ] satisfy

([µ]YLL + [YLLµ])[α,αc] = [µ[α]](YLL)[α,αc] = 0 (107)

and

([µ]YLL + [YLLµ])[α,α]

= [µ[α]](YLL)[α,α] + [(YLLµ)[α]]

= 0 +
[
(YLL)[α,α]µ[α] + (YLL)[α,αc]µ[αc]

]
= [(YLL)[α,αc]µ[αc]].

(108)

It follows from (107) that [µ]YLL+[YLLµ] is block-triangular.
Hence, the eigenvalues of each diagonal block are also eigen-
values of [µ]YLL + [YLLµ]. The principal submatrix given in
(108) is such a diagonal block. Note from (108) that this block
is diagonal, and so its eigenvalues are the elements of the
vector (YLL)[α,αc]µ[αc]. Since YLL is an irreducible Z-matrix
we have (YLL)[α,αc] � 0. Recall that µ[αc] > 0, which implies
that

(YLL)[α,αc]µ[αc] � 0,

and so [µ]YLL+[YLLµ] has nonpositive eigenvalues. However,
since [µ]YLL + [YLLµ] is an M-matrix, its Perron root is
positive and is a lower bound for all other eigenvalues, which
is a contradiction. We conclude that µ > 0.

The matrix g(µ) is linear in µ. Hence, scaling of µ gives
rise to a scaling of the eigenvalues of g(µ), and in particular
of the Perron root of g(µ). Hence M is a cone. The set of
nonsingular M-matrices is open, and so M is an open set.

The set ∂D is simply connected by Theorem 3.7. Theo-
rem 6.6 shows that there exists a bicontinuous map between
∂D and M1. Topological properties are preserved by bicon-
tinuous maps, and hence M1 is also simply connected. Its
conic hull M is therefore also simply connected.

Lemma A.2: The set of long-term voltage semi-stable
operating points is contained in M (i.e., cl(D) ⊆M).

Proof: Recall from Corollary 3.4 that if ṼL ∈ cl(D), then
− ∂Pc

∂VL
(ṼL) is an M-matrix. This means that g(ṼL) − [I∗L]

is an M-matrix by (69). By adding [I∗L] to g(ṼL) − [I∗L],
Proposition A.3:6 implies that g(ṼL) is an M-matrix since
I∗L 	 0.

F. Proof of Theorem 7.5

For the sake of notation we follow Lemma 7.7 and define
ŶLL := [V ∗L ]YLL[V ∗L ], which is an irreducible nonsingular M-
matrix. It follows from [10, Thm. 5.12] that the inverse of ŶLL
is positive. Let S be the set of P̃c defined by

P̃c ≥ 0; ŶLL
−1P̃c ≤ 1

41, (109)

which corresponds to all P̃c ∈ N so that (98) holds. The set
S is convex and (109) describes the intersection of 2n closed
half-spaces. The normals to these half-spaces are given by the
canonical basis vectors e1, . . . , en and the rows of ŶLL−1. The
set S is bounded since ŶLL

−1 is positive. Weyl’s Theorem
[15, pp. 88] states that S is the convex hull of the points
which lie on the boundary of n half-spaces in (109) so that
their corresponding normals span Rn. To this end we define

P ∅c := 0, which lies on the boundary of the n half-spaces
described by P̃c ≥ 0. Similarly, we let α ⊆ n be nonempty
and let Pαc ∈ S be a point described by Weyl’s Theorem
for which (ŶLL

−1P̃c)[α] = 1
41 and (ŶLL

−1P̃c)[αc] <
1
41.

The corresponding normals are given by the rows of ŶLL−1

indexed by α. Since ŶLL is positive definite we know that
(ŶLL)[α,α] is positive definite and therefore nonsingular. The
only choice of normals of the half-spaces which complete the
span of Rn are ei for i ∈ αc, which implies (Pαc )[αc] = 0.
Since (Pαc )[αc] = 0 we have

1
41 = (ŶLL

−1Pαc )[α] = (ŶLL
−1)[α,α](P

α
c )[α],

and therefore (Pαc )[α] = 1
4 (ŶLL

−1)[α,α]
−11. By the block

matrix inverse formula [11, Eq. (0.8.1)] we observe that

(Pαc )[α] = 1
4 (ŶLL/(ŶLL)[αc,αc])1. (110)

The above exhaustively describes all points specified by
Weyl’s Theorem, and hence we have

S = conv({ Pαc | α ⊆ n }).

Recall that P ∅c = 0 = Pc(V
∗
L ) ∈ int(F). The points Pαc for

nonempty α ⊆ n correspond to the power demands described
in (99) through substitution of ŶLL = [V ∗L ]YLL[V ∗L ]. We show
that these points lie on the boundary of F . Note that for α = n
we have by (110), (6) and (23) that

Pn
c = 1

4 ŶLL1 = 1
4 [V ∗L ]YLL[V ∗L ]1 = 1

4 [V ∗L ]I∗L = Pmax,

which lies on the boundary of F . Consider any feasible power
demand P̃c ∈ F such that (P̃c)[α] = 0 with α 6= ∅,n. Let
ṼL > 0 be a so that P̃c = Pc(ṼL). By (10) we have

0 = Pc(ṼL)[αc] = [(ṼL)[αc]](YLL(V ∗L − ṼL))[αc] (111)

where we used (6). Since (Ṽ αL )[αc] > 0 it follows from
(111) that (YLL(V ∗L − ṼL))[αc] = 0. Since (YLL)[αc,αc] is
nonsingular, we may solve for (ṼL)[αc]. Similar to [11, Eq.
(0.7.4)], substitution of (ṼL)[αc] in Pc(ṼL)[αc] yields

Pc(ṼL)[α] = [(ṼL)[α]]YLL/(YLL)[αc,αc]((V
∗
L )[α] − (ṼL)[α]),

which corresponds to the power flow equations of a Kron-
reduced power grid (see, e.g., [13], [16]). Analogous to
Lemma 2.18, the maximizing feasible power demand for the
Kron-reduced power grid is obtained by taking (ṼL)[α] =
1
2 (V ∗L )[α], which corresponds in the power demand Pαc . Hence
Pαc lies on the boundary of F . Since F is convex by
Theorem 3.18, and Pαc ∈ F for all α ⊆ n, we have that
S ⊆ F ∩ N . Each supporting half-space of F has a unique
point of support (Theorem 3.12), and so the boundary of F
does not contain a line piece. Consequently, the all points in
S other than the points Pαc for α 6= ∅ lie in the interior of F .
Lemma 7.1 implies (98) from (109).
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